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The Mobile Genetic Element Alu  
in the Human Genome  

Transposable elements represent a dramatic source o f  
genetic variation 

Gabriel E. Novick, Mark A. Batzer, Prescott L. Deininger, and Rene J. Herrera 

G enetic material has been tra- 
ditionally envisioned as rela- 
tively static with the excep- 

tion of occasional, often deleterious 
mutations. The sequence DNA-to-
RNA-to-protein represented for  
many years the central dogma relat- 
ing gene structure and  function. 
Recently, the field of molecular ge- 
netics has provided revolutionary 
information on the dynamic role of 
repetitive elements in the function 
of the genetic material and the evo- 
lution of humans and other organ- 
isms. 

Alu sequences represent the larg- 
est family of short interspersed re-
petitive elements (SINES)in humans, 
being present in an excess of 500,000 
copies per haploid genome. Alu ele-
ments, as well as the other repetitive 
elements, were once considered to  
be useless. Today, the biology of 
Alu transposable elements is being 
widely examined in order to  deter- 
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Alu elements,  
responsible for  

innumerable genetic  
disorders, can be  

markers for human  
identification and are  

raw material  
for evolution  

mine the molecular basis of a grow- 
ine number " of identified diseases 
and to ~ r o v i d e  new directions in 
genome mapping and biomedical 
research. 

Only a small fraction of the hu- 
man genome consists of functional, 
or protein-encoding, genes. If all the 
nucleotide information were trans- 
lated, l o 9  amino acids, or  approxi- 
mately 3 million average-size pro- 
teins, would be encoded. Based on 
the fully sequenced genomes of 
simple organisms and considerations 
of the higher complexity of humans, 
it is estimated that no more than 
60,000 to 100,000 proteins, in ad- 
dition to  functional RNAs, are es- 
sential for the survival of the species 
(Alberts et al. 1989) and as a result 
are conserved throughout evolution. 
Considering that many genes are 
repetitive, only approximately 10%- 
20% of the human DNA encodes 
functional sequences. What is the 
function of the remaining DNA? 

Discovery and classification of 
repetitive elements 

When the DNA double helix of 
higher organisms (species other than 
bacteria and viruses) is split open or 
denatured into two single strands 
by heat and left to  spontaneously 
reanneal, the entire DNA is not likely 
to  become double-stranded at the 
same rate. In contrast, all parts of 
bacterial and viral DNA reanneal at 
approximately the same rate. This 
phenomenon was observed in the 
now classical experiments of Britten 
and Kohne (1968) and was correctly 
interpreted as  a n  indicat ion o'f 
greater sequence complexity among 
eukarvotes. 

These experiments distinguish 
three populat ions of eukaryotic 
DNA based on the time that it takes 
DNA t o  aga in  become double-
stranded. There is a quickly rean-
nealing component  representing 
25% of the total DNA, an  interme- 
diate component tha t  represents 
30% of the total DNA, and a slow 
component that represents 45% of 
the total DNA (Britten and Kohne 
1968).  

When the slow component was 
analyzed by DNA sequencing, it was 
found to be made up of single-copy 
sequences, which include the genes 
that encode proteins, while the fast 
and intermediate comDonents re-
flected the presence of repetitive se- 
quences. Repetitive DNA can find a 
complementary sequence on the 
other strand more rapidly than can 
single-copy sequences, because reit- 
erated DNA can bind to any one of 
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the copies on several sites. The fast 
component contains small (a  few 
nucleotides long), highly repetitive 
DNA sequences, which are usually 
found in tandem. The intermediate 
component  contains  moderately 
reiterated DNA sequences (Brosius 
1991). 

Intermediate  repetitive DNA 
shows two common characteristics: 
The repetitive units, which can be 
up to several thousand nucleotides 
long, are similar to  one another but 
not identical, and they are inter-
spersed along the genome ( n o t  
tandemly arrayed). Within this cat- 
egory are the transposons, elements 
that are able to  move from one ge- 
nomic location t o  another.  This 
movement can be mediated by DNA 
or RNA. In RNA-mediated transpo- 
sition, the transposon is transcribed 
to an RNA intermediate, this RNA is 
reverse transcribed into DNA, and 
this copy DNA (cDNA) is reinserted 
into the genome. The elements mo- 
bilized in this manner are known as 
retroposons (Rogers 1985). 

Retroposons can be divided into 
two superfamilies. The viral super- 
family represents ancient viral inte- 
gration events and  includes the 
Copia family in Drosophila (Mount 
et al. 1985) and THE1 in humans 
(Paulson et al. 1985). The nonviral 
retroposon superfamily can be fur- 
ther divided into short and long in- 
terspersed elements (SINEs and  
LINES). SINEs are usually 75 to  500 
base pairs (bp)  in length, and LINES 
can be as long as 7000 bp. SINEs 
contain internal RNA polymerase 
111 promoters, while LINE transcrip- 
tion is under the control of the RNA 
polymerase I1 promoters that are 
generally present in the adjacent se- 
quences flanking the retroposons. 
Also, SINEs do  not encode specific 
enzymes, while many LINES encode 
at least the reverse transcriptase used 
in their own retroposition. Being 
transcribed by RNA polymerase I11 
f rom internal promoters  allows 
SINEs t o  remain transcriptionally 
active even after retroposition t o  
new chromosomal sites. 

The best characterized LINE is 
the L1 family (Rogers 1985), which 
is present in excess of 50,000 copies 
interspersed throughout each mam- 
malian genome. The Alu family is 
the most abundant and best charac- 
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Figure 1. The dimeric structure of the Alu element. The two halves are linked by 
an adenine-rich area marked by a capital A at position 133. The right monomer 
(heavy lines) includes a 31-base pair insertion, and the left half contains the RNA 
polymerase 111promoter (boxes A and B). Many Alu elements possess an adenine- 
rich region at the end, marked by an A, (at position 294 in this diagram). 

terized SINE family in primates 
(Daniels et al. 1983). 

Distribution and structure of 
the Alu family 

The Alu family of repetitive ele-
ments was originally identified as a 
fraction of renatured repetitive DNA 
that was distinctively cleaved with 
the restriction enzyme Alu I (Houck 
et al. 1979). The Alu family consti- 
tutes approximately 5 %  of the total 
mass of the human genome, and 
there are more than 500,000 copies 
per haploid genome (Rinehart et al. 
1981).  

The structure of an  Alu element, 
as shown in Figure 1, presents a 
dimeric organization in which the 
right monomer (heavier lines) is 31  
nucleotides longer than the left one. 
The left half of the element contains 
the RNA polymerase I11 promoter 
boxes A and B. The promoter di- 
rects transcriptional initiation to  a 
specific site upstream of box A. Al- 
though box A, located between and 
including nucleotides 5 and  31,  
seems to  determine strength and 
accuracy of initiation, only box B, 
which includes positions 70-100, 
appears to  be essential for transcrip- 
tion (Fuhrman et al. 1981). Alu ele-
ments possess a short A-rich se-
quence between the two dimers and 
a 3 '  oligo A track of up to  200 bps, 
which are characteristic of all SINES 
(Economou et al. 1990).  The repeat 
is flanked by direct repeats derived 
by duplication of target sequences 
at the site of integration. 

Alu elements are ancestrally de- 
rived from the 7SL RNA gene (Ullu 

and Tschudi 1984). 7SL RNA is a 
small constituent of the signal rec- 
ognition particle (SRP) involved in 
the transportation of proteins into 
the lumen of the endoplasmic reticu- 
lum in the cytoplasm of the cell. The 
SRP binds to  a specific signal con- 
tained in secretory proteins and tar- 
gets them to the endoplasmic reticu- 
lum (Walter  and  Blobel 1982 ) .  
Although Alu elements have di-
verged, they retain approximately 
90% sequence similarity to  the 7SL 
RNA gene. However, the gene has 
150 bp in its middle that is not 
found in the Alu family (Deininger 
1989).  

Mechanism of 
Alu retroposition 
The mechanism by which Alu and 
other SINEs retropose consists of 
steps in which the element is tran- 
scribed, reverse transcribed, and then 
integrated into a new genomic loca- 
tion (Figure 2). 

Transcription. Transcription of Alu 
elements (similar to  almost all other 
SINEs) is initiated by RNA poly- 
merase I11 at a site upstream of the 
internal split promoter. Transcrip- 
tion continues along the entire ele- 
ment and into the flanking sequence 
where the polymerase terminates its 
reading (short poly T track). In this 
way, the Alu RNA transcript retains 
its promoter after transcription, but 
the promoter is not sufficient for 
effective transcription in a new lo- 
cation. In vivo studies show that the 
7SL RNA gene requires sequences 
upstream of the promoter, which 
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end of the transcript, derived from 
the RNA polymerase I11 termination 
signal (Figure 2),fold back, the uracil 
bases pair to  an internal A rich area; 
and the stretch of uracils then func- 
tions as a primer for reverse tran- 
scr ipt ion (Jagadeeswaran et  al. 
1981).  It is also possible that an 
external rimer may be involved in 
this process. A complementary 
strand to the RNA transcript is cop- 
ied, starting at the primer binding 
site, by the enzyme reverse tran-
scriptase. 

The source of this enzyme is still 
a matter of controversv. RNA vi- 
ruses called retroviruses use their 

Box Box + 
Insertion into a new 

genomic location 

Figure 2. The most w~dely accepted model of Alu amplification. The llghter llnes 
represent the transposable element. An RNA ~ntermed~ate transcr~bed by RNA 
polymerase 111 is produced. That transcript contains a poly A stretch at  the 3' end 
of the element and a short poly U track downstream, which represents the 
polymerase I11 termlnatlon s~gnal. The 3' end of the transcript can fold back, and 
the poly U pairs w ~ t h  the poly A track of the element and prlmes ~ t s  own reverse 
transcription. Alternat~vely, an exogenous sequence may be lnvolved In pr~ming 
reverse transcrlptlon. The cDNA copy inserts itself into staggered n~cks  In a new 
genomic location. The filling of the resulting gaps in the host creates direct repeats 

own reverse transcriptase to  synthe- 
DNA intermediate size a cDNA intermediate before in- 

se r t ion  i n to  t he  hos t  genome.h%%*h%%%a3' " 
Retroviral infections or endogenous 
retroviral-like sequences (Martin et 
al. 1981) may provide the enzyme 
for SINE reverse t ranscri~t ion.  Most 
L1 elements (the most important 
LINE family in humans) are trun-
cated: however. some of them are 
known to code for a functional re- 
verse transcriptase (Mathias et al. 
1991). Because mammalian genomes 
contain up to  50,000 copies of L1 
elements, these elements constitute 
a prolific source of endogenous re- 
verse transcriptase. 

Integration. Integration of the cDNA 
into a new location requires nicks in 
the genomic DNA (one in each DNA 
strand) at the target site for integra- 
tion. Repair of the nick after inser- 
tion results in the formation of flank- 
ing direct repeats. 

The integration process is fairly 
random. However, there appears to  
be alternating distribution of SINES 
and LINES along the chromosome, 
based on in situ hybridization stud- 
ies of Giemsa-stained metaphase 
ch romosomes  (Korenbe rg  a n d  
Rykowski 1988).  The target sites 
for SINE integration tend to be A+T 
rich regions (Batzer et al. 1990). Be- 
cause SINEs are highly G+C rich ele- 
ments, their insertion creates small 
G+C islands in A+T rich regions. 

Origins and evolution of 
Alu elements 
Although it is generally accepted 
that the Alu family originated from 
a modified RNA transcript of the 
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(heavy I~nes)  flanking the elements. 

are not carried by the SINE during 
retroposition, for efficient expres-
sion (Ullu and Weiner 1985). Be- 
cause these sequences are required 
for Alu transcription in vivo, the 
vast majority of Alu elements are 
transcriptionally silent unless in- 
serted into a favorable genomic lo- 
cation that  fortuitously provides 
them with the 5 '  cis regulatory se- 
quences. 

In addition, after insertion most 
SINES are subject to  methylation that 
is tissue and temporally specific. This 
methylation results in a tenfold 
higher than normal mutation rate at 
these sites (Batzer et al. 1990). Me- 
thylation, by itself, and the accumu- 
lated mutations within promoter 
sequences correlate with inhibition 
of transcription (Deininger and  
Batzer 1993). Although most SINEs 
are transcriptionally silent (Schmid 
and Maraia 1993), occasionally se- 
quences in the target site of inser- 
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tion act in conjunction with the 
RNA polymerase 111 promoter to  ini- 
tiate transcription. 

Some Alu family members in-
serted into genes are transcribed by 
polymerase I1 as part of nascent 
mRNA. Alu sequences located in in- 
trons are transcribed by polymerase 
I1 and then spliced out with the rest 
of the intron RNA before transla- 
tion of the RNA into protein (such 
transcription is called piggyback 
transcription). Alu sequences are 
sometimes found in exons (trans-
lated sequences) and may bkcome 
part of peptides in some cases (Maka- 
lowski et al. 1994).  As part of pro- 
teins, the amino acids correspond- 
ing to Alu sequences provide raw 
genetic material for evolution. 

Reverse transcription.The first event 
involved in reverse transcription is 
priming. It has been postulated that 
the uracil residues present at the 3 '  



7SL RNA gene (Ullu and Tschudi 
1984), two models have been pro- 
posed to explain the expansion of 
the repetitive element family. These 
models are called the transposon 
model and the master gene model. 

The transposon model postulates 
that many SINEs generate new ele- 
ments, each with the same chance of 
being transpositionally active. This 
mechanism would  generate  se-
quences that diverge from the origi- 
nal sequence as the multiplication 
process continues. The nucleotide 
differences among Alus would in- 
clude every possible mutation along 
the entire length of the elements. 
The sequences of the members of the 
family would diverge independently 
as different members multiply and 
accumulate mutations. 

Data shows that the amplifica- 
tion rate (number of insertions as a 
function df time) is not exponential 
as would be expected if the trans- 
poson model is correct and other 
factors (e.g., availability of reverse 
transcriptase) were not limiting. In 
fact, Alu amplification rate is highly 
variable, with periods of high and 
low am~lification rates. The recent 
Alu amplification rate, estimated a t  
one insertion fixed in the popula- 
tion per 5000 years, is approximately 
100-fold slower than a t  its peak 
approximately 40-50 million years 
ago (Shen et al. 1991). 

The observation of a few clearlv 
defined subfamilies of elements also 
does not support the transposon 
model. Subfamilies are defined ac-
cording to the presence of certain 
characteristic (diagnostic) muta- 
tions. For example, a given Alu 
subfamily may be characterized by 
the presence of a G, instead of the 
more typical T, a t  nucleotide posi- 
tion number 156. 

The master gene model (Deininger 
et al. 1992) proposes that most SINEs 
are derived from one or a few active 
loci. This model predicts a linear am- 
plification rate controlled by the am- 
plification of the master genes. Muta- 
tions in the master genes would 
generate new subfamilies and might 
cause variations in the amplification 
rate (Deininger and Batzer 1993). 

For example, a t  time zero an 
unmutated master gene would gen- 
erate a family of elements with a 
sequence identical to itself. Over 
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Figure 3 .  Alu polymorphism PCR assay. Specific PCR primers (arrows) directed to  
the single copy sequences that flank the Alu insertion (light lines) are used for 
amplification. In individuals homozygous for a particular insertion, only one large 
DNA fragment containing the Alu insertion is likely t o  be amplified (representing 
the same locus on homologous chromosomes). In individuals homozygous for the 
lack of the Alu insertion, only one smaller DNA fragment is likely t o  be generated. 
Heterozygous individuals are likely to yield two amplification products, one made 
up of small DNA fragments and the other of larger pieces of DNA, representing the 
presence of the insertion in only one of the two homologues. 

time, this master gene would mu-
tate, and subsequent copies of the 
sequence would constitute a sub-
family, which is slightly different 
from the original group. Each new 
mutation in this master gene would 
not only be added to the previous 
one and generate a new subfamily, 
but it might also affect the rate of 
amplification of the family. 

In the case of Alu elements. sub- 
families can be arrayed in a sequen- 
tial manner (Britten 1994, Britten et 
al. 1989, Shen et al. 1991) in which 
the older the subfamilv. in evolu- ,, 
tionary terms, the more random 
variations are observed within the 
subfamily members. For example, 
the number of differences Dresent 
among the older primate-specific (PS) 
subfamily members is greater than 
the number observed among a hu- 
man-specific (HS) subfamily. 

A recently inserted human spe- 
cific (HS-1) subfamily was identified 
in humans with only a few copies 
located in chimp and gorilla genomes 
(reviewed in Batzer et al. 1995).  
Another human specific subfamily 
(HS-2) was exclusively found in hu- 
mans. In addition, a third subfam- 

ily, the Sb-2, has human-specific 
members. Some of the members of 
HS-1, HS-2, and Sb-2 subfamilies 
have inserted so recentlv that not 
all humans have the insirtion in a 
particular locus. This observation 
represents the basis for the use of 
polymorphic Alu insertions for pop- 
ulation studies of geographically 
diverse groups (Batzer et al. 1991, 
1993, 1994, in press, Novick et al. 
1992, in press). In light of all this 
evidence, even if full exponential 
amplification is halted by limiting 
factors. the existence of a small 
number of subfamilies provides 
strong support for the master gene 
model. 

An interesting related issue con- 
cerns the potential factors that regu- 
late Alu copy number. Because Alu 
insertions are for the most part del- 
eterious, it is logical to expect a 
maximal number of insertions after 
which the genetic burden or load 
would not tolerate additional Alu 
insertions. The 100-fold decrease in 
Alu insertion rate over the last 40-50 
million years may be indicative of a 
limit to the number of Alu copies 
that our gene pool can withstand. 
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both to the cell and to the evolution 
of the s~ecies. New molecular evi- 

Figure 4. Agarose gel electrophoresis and codominant segregation of polymorphic 
Alu PCR products for the angiotensin converting enzyme locus in a family. The 
pedigree studied is represented on top of the figure, and the electrophoretic 
separation is found immediately under each individual on the pedigree. Lanes 1 
and 9 represent molecular size standard Hue 111 digested OX174 DNA. Arrow A 
indicates the insertion band (490 bp for this locus), arrow B points to the lack of 
insertion band (190 bp for this locus), and arrows C and D represent primer-dimer 
and primer, respectively. 

The force responsible for establish- 
ing and maintaining such a limit 
may be a selection against individu- 
als experiencing de novo insertions, 
especially if they significantly dis- 
rupt the function of critical genes. 
In theory, once the number of Alu 
copies in the human gene pool 
reached this limit, only a few de 
novo insertions could become fixed 
in the population, replacing the Alu 
copies lost, for example, during un- 
equal crossing over. 

Alu insertions and the 
genomic environment 
Do Alu elements have any function? 
How does their presence affect 
neighboring sequences and the ge- 
nome as a whole? Transposable ele- 

ments were initially considered mere 
parasites of the genome with no 
major effect on the organism (Orgel 
and Crick 1980). This perception 
resulted in what is known as the 
selfish DNA hypothesis (Orgel and 
Crick 1980), wherein repeated DNA 
sequences, and transposable ele- 
ments in particular, have no cellular 
function or genetic effect but to in- 
crease their copy number. The phrase 
selfish DNA has become so popular 
that it is included in The Oxford 
English Dictionary (1989), which 
defines it as "genetic material tend- 
ing to be perpetuated or to spread 
although of no effect on the pheno- 
type." 

Initially, transposable elements 
were viewed by some as being either 
molecular fossils or inconsequential 

dence regarding the structure and 
evolution of this class of sequences, 
however, suggests that although re- 
peated DNA sequences may have 
originated as innocuous elements, 
they can have dramatic effects on 
genome organization, function, and 
evolution (Makalowski et al. 1994). 
Although the notion of Alu ele- 
ments as mutagens causing deleteri- 
ous effects is well recognized, there 
are also innumerable examples of 
Alu insertions involved in normal 
DNA structure and function. To cite 
a few examples, representative and 
recent studies have demonstrated the 
role of Alu elements as DNA orga- 
nizers (Englander and Howard 
1995), enhancers (Almenoff et al. 
1994), and silencers (Hanke et al. 
1995) in gene expression. Over the 
past decade, the list of studies point- 
ing to roles performed by SINEs is 
extensive (see von Sternberg et al. 
1992 for review of the literature). 
Therefore, whether or not Alu ele- 
ments and SINEs in general, are 
considered selfish DNA. they can 
result in functional sequences. 

As an alternative to the selfish- 
DNA hypothesis, we proposed a 
model called genome canalization 
(von Sternberg et al. 1992). Genome 
canalization is the process whereby 
once a pattern of genomic organiza- 
tion is established, all further evolu- 
tionary changes must adapt to the 
prevailing genetic context. The ba- 
sic concept of genome canalization 
is not a novel one, coevolution be- 
ing the underlining principle. In the 
same way that birds and plants co- 
evolved specific peak and flower 
morphology for their mutual ben- 
efit, so it is that different types of 
DNA coevolved to perform a func- 
tion. 

At the DNA level, for example, 
there is an intimate relationship be- 
tween genes and their transcription 
regulatory sequences brought about 
by the process of molecular coevo- 
lution. Alu elements and other 
SINEs are just one source of genetic 
material that is often placed in physi- 
cal proximity to  other DNA se- 
quences, dramatically fueling the co- 
evolutionary process. 

The various types of mutations 
(transposition events being among 
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the most dramatic) would be chan- Table 1. Potential effects of Alu insertions. 
neled by the interaction of the chro-
mosomal segments at all levels. In Insertion Potential effect o n  gene organization and function 

u 

this model. transposable elements 
cannot be said toAhave evolved to 
meet some specific adaptive need, 
but thev have acauired roles fortu-
itously due to  their widespread ge-
nomic distribution and novel struc-
tural properties (Brosius 1991). As 
a result, transvosable elements can 
now be regarded as having potential 
functions, although not  adaptive 
ones (Doolittle 1989). 

Doolittle (1989) has defined the 
term exaptivk funCtion as ifeatures 
that now enhance fitness but were 
not built bv natural selection for 
their current roles...." From this 
perspective, mobile sequences could 
well have originated in a selfish 
manner: however. once distributed 
chromosomally, individual elements 
diverged and their genetic effects 
resulted in particular functions. 
Once such functions arose. thev were 
then capable of being under'selec-
tive pressure (Brosius 1991).In other 
words. with time and the action of 
selective evolutionary forces, the 
exaptive function may have evolved 
into an adaptive one. 

Table 1 illustrates the retronoson 
mode of insertion, potential genomic 
insertional sites, immediate conse-
quences on gene function and orga-
nization, and some of the possible 
adaptive outcomes within structural 
genes and regulatory sequences. Alu 
insertions are capable of affecting 
the structure and function of the 
rest of the genome in many ways. 

This finding is not surprising con-
sidering that these elements contain 
genetic information, including tran-
scription regulatory sequences, that 
insert themselves indiscriminately all 
over the genome. Subsequent to  in-
sertion. coevolution with different 
types of neighboring sequences ulti-
mately may yield diverse novel func-
tions for the DNA region in ques-
tion. 

Table 1 focuses on the immediate 
effects on gene structure and func-
tion of Alu insertions in different 
genomic environments. Other fac-
tors like genetic drift, migration, or 
polymorphisms near the insertional 
sites act at  the population level and 
can, in turn, influence the fate of 
Alu elements as well. 

Into promoters Trans-acting factors and/or RNA polymerase cannot recognize the 
promoter sequences leading to  transcription failure. 

Between promoters The distance between promoters is modified and their function 
altered or  obliterated preventing transcription initiation. 

Into enhancers The action of enhancers over promoters is altered affecting transcrip-
tion levels. 

Into exons A new product is produced with similar o r  different func t~on(s ) .  

Rearrangements are promoted leading to  additionldeletion and frame 
shift mutations. 

A cryptic splice site is activated creating a new gene product. 

The Alu element is removed. 

Into introns The splice site(s) are modified generating a new gene product with 
similar o r  different function(s). 

The Alu element is spliced out. 

Into heterochromatic New Alu elements tend to  cluster in the area affecting expression of 
domains nearby genes. 

Alu insertions and 
human biology 

Some representative examples of 
Alu insertions causing human disor-
ders are: 

Hemophilia-a series of disorders 
that are caused by mutations in any 
of a number of different blood-clot-
ting factors. A de novo insertion of 
an "HS Alu family member into the 
blood coagulation factor IX locus 
has resulted in hemophilia (Vidaud 
et al. 1993). This Alu reDeat in-
serted into kxon V of the factor IX 
gene results in the generation of a 
premature stop codon. This inser-
tion gives rise to  a nonfunctional 
factor IX, which is inherited as an 
X-linked disorder. 

Meningiomas-tumors of the  
membranes that surround the cen-
tral nervous system. Meningiomas 
are frequently associated with com-
plete or partial deletions of chromo-
some 22, and the gene most fre-
quently affected is the c-sis gene, 
which encodes one of the t w o  
polypeptide subunits of the platelet-
derived g o w t h  factor (Dalla Favera 
et al. 1982). The deletion of an Alu 
element located in the fifth intron of 
c-sis is associated with the develov-
ment of this type of tumor (Smidt et 

al. 1990).  Therefore, this human 
malady represents an Alu element 
necessary for normal gene function. 

Hereditary angioneurotic edema-
a genetic disorder caused by the de-
ficiency of an inhibitor called C1 
(CI  INH). Seventeen A ~ U  repeat se-
quences were identified within the 
C1 INH gene (Carter and Fothergill 
1989), and one study demonstrated 
that partial deletions, observed in 
two families with hereditary angio-
neurotic edema, are the result of 
Alu-Alu recombination by unequal 
crossing-over within the C1 INH 
gene (Ariga et al. 1990). The most 
frequent breakpoint for recombina-
tion lies on the left half of the Alu 
elements between two A and B boxes 
of the RNA polymerase 111promoter. 

Familial hv~ercholesterolemia-, 
a n  autosomal  dominant  disease 
caused by mutations in the gene for 
the low density lipoprotein (LDL) 
receptor. A defective L D L  receptor 
in a member of an affected family 
was found to be 50,000 daltons 
larger than normal. The anomalous 
protein was found to be the result of 
a 14-kilobase duvlication due t o  
unequal crossing-over between ho-
mologous Alu elements in introns 1 
and 8 (Lehrman et al. 1987). Again 
the most frequent breakpoints were 
found in the area of the RNA poly-
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merase I11 promoter. 
Gyrate atrophy of the choroid and 

retina-an au to soma l  recessive 
chorioretinal degeneration caused by 
deficiency of o rn i t h ine  k-ami-
notransferase. In one patient with 
typical symptoms and consanguine-
ous parents, the molecular defect 
was found to be a 142-nucleotide 
insertion in the mature ornithine k-
aminotransferase mRNA due t o  a 
splice-mediated insertion mutation 
of an  Alu element in opposite orien-
tation to the affected gene. This Alu 
element is normally located in in-
tron 3 of the gene (Mitchell et al. 
1991).  

~e \ ; e r ecombined immune defi-
ciency-a disorder caused by a dys-
function of the gene that codes for 
adenosine deaminase (ADA). Two 
independent cases of ukelated ori-
gin showed that the defect was due 
to  a 3.2-kilobase deletion in the pro-
moter and first exon of ADA. This 
deletion was confirmed to be the 
result of homologous recombination 
between Alu repeats. The break-
point was mapped to the left arm of 
the Alu, in the area of the poly-
merase I11 promoter (Berkvens et al. 
1990).  

Neurofibromatosis type 1 (NF1)-a 
common autosomal dominant dis-
o rde r  charac te r ized  by neu ro -
fibromas. other cutaneous disorders. 
bone deformities, and learning dis-
abilities. A mutation found in an 
affected adult male is a de novo Alu 
insertion into an intron of the NF1 
gene (Wallace 1991).The target site 
for insertion was found to  be a 
26-base pair A+T rich region that is 
known to be a referential site for 
Alu insertions. t h e  presence of the 
element causes intron sliding in 
which the following exon is removed 
along with the inGon during splic-
ing and the reading frame is shifted 
(Wallace 1991). 

Glanzmann thrombasthenia (GT)-
an autosomal recessive bleeding dis-
order due to  a defect in the platelet 
fibrinogen receptor, which causes 
an inabilitv of the a late lets to  either 
bind to  fibrinogei and aggregate. 
Both binding to fibrinogen and ag-
gregation are crucial for normal 
coagulation. In one affected family, 
the molecular defect was identified 
as a 1-kilobase deletion immediatelv 
preceding a 15-kilobase inversion 
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Figure 5. Summary of scores obtained from the members of the pedigree repre-
sented in Figure 4 after the Alu PCR polymorphism assay for each of the five loci 
studied. HF: homozygous for the insertion; H: heterozygous; HL: homozygous for 
the lack of insertion. 

due to breaks in two antisense (op-
posite orientations) and one sense 
Alu sequences within the gene of 
one of the glycoproteins (GPIIb) that 
constitute the receptor (Lu and Bray 
1993).  

Although Alu insertions o r  dele-
tions in specific genes have been 
found to result in the described dis-
eases, there are other types of muta-
tions (e.g., base substitutions) that 
can cause many of the above-men-
tioned disorders as well. 

In addition, Alu elements are im-
plicated in the evolution of new 
genes. An example can be found in 
glycophorins A (GPA)and B (GPB)-
membrane sialoglycoproteins of 
human erythrocytes. When their 
amino acid and cDNA sequences are 
compared, there is one area where 
GPA and GPB are identical and an-

other where they are entirely differ-
ent (Kudo and Fukada 1989). The 
transition site from homologous to  
nonhomologous sequences occurs 
within an Alu repeat. Kudo and 
Fukada (1989) postulate that GPB 
originated by duplication of GPA 
and homologous recombination be-
tween two adjacent Alu elements, 

which may have also been involved 
in the original duplication event. 

Alu elements as research tools 

Alu reDeats as markers for human 
population genetics and DNA fin-
gerprinting. We have already de-
scribed the wav in which subfami-
lies of Alu eiements might have-
arisen from sequential mutations of 
a master gene. Recently inserted 
Alu elements (like some HS-1. HS-2. 
and Sb-2 subfamily membeis) are 
only found in some of the insertion 
sites in a given population (Batzer et 
al. 1995). Therefore, they represent 
insertion polymorphisms within 
populations. Given that Alu ele-
ments are generally highly stable 
a f te r  i n t eg ra t i on  (Sawada  a n d  
Schmid 1986), and each element is 
absent from nonhuman primates, 
the lack of insertion can be consid-
ered the ancestral state and the pres-
ence of the Alu element in that loca-
tion the recent character state. 

We have developed a polymerase 
chain reaction (PCR) assay to  detect 
the presence or absence of Alu in-
sertions (Batzer et al. 1991). PCR 
reproduces in vitro the events of 
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DNA replication in a cyclic manner, 
resulting in the exponential amplifi- 
cation of the original target sequence 
(Saiki et al. 1988). The principle of 
the Alu polymorphism assay is sum- 
marized in Figure 3. The assay uses 
oligonucleotide primers directed to  
the 5 '  and 3'  single-copy sequences 
flanking the specific Alu element to  
be studied. This assay generates three 
potential outcomes when the PCR 
products are separated by electro- 
phoresis on an agarose or acrylamide 
gel. Homozygous individuals for the 
Alu insertion amplify, for example, 
a large fragment that represents the 
Alu insertion between the two prim- 
ers; an individual homozygous for 
the lack of insertion shows onlv a 
small fragment; and a heterozygous 
individual amplifies both products- 
the small fragment from the allele 
that lacks the insertion and the large " 
fragment from the insertion allele 
(see lower panels in Figure 3) .  

When this assay is used to screen 
geographically distinct populations, 
a genetic profile of each group can 
be constructed and compared. All 
the characteristics of Alu elements 
described thus far (mechanism of 
retroposition, relatively nonspecific 
site of insertion, rate of amplifica- 
tion, and variability of the oligo dA 
track) suggest that it is unlikely two 
populations of unrelated origin have 
the same insertion frequencies for 
several Alu insertions. The stability 
and d imor~h ic  distribution of Alu 
elements make them ideal markers 
for population studies. For example, 
we recently presented evidence for 
an African origin of modern human 

L, 

populations using only four poly- 
morphic Alu insertion loci (Batzer 
et al. 1994). and we demonstrated ,, 
admixture involving African Colom- 

u 

bian and American Indian popula- 
tions (Novick et al. in press) as well 
as African Caribbean and African 
American groups (Batzer et al. in 
press). 

In the area of DNA fingerprint- 
ing, multiple approaches are cur-
rently being used and new strategies 
are in constant development. Re- 
striction fragment length polymor- 
ph ism~ or RFLPs (Kan and Dozy 
1 9 7 8 )  and  hypervariable  mini-
satellite regions (Jeffreys et al. 1985) 
are the most widely used DNA typ- 
ing methods. Recently, polymorphic 

Alu insertions have been em~loved  
L ,  

successfully in human identification 
studies (Novick et al. 1994). 

Many technologies, aimed at hu- 
man identification, have been devel- 
oped. These technologies include the 
use of monoclonal antibodies for 
the identification of body fluids 
(Martin and Parkin 1988), protein 
polymorphisms (Hobart 1979), hu- 
man leukocyte antigen (HLA) typing 
(Ishitani and Hirota 1988). short , , 

tandem repeat PCR polymorphisms 
(Edwards 1991), amplified fragment 
length polymorphisms (Eisenberg 
and Maha 1991), and minisatellite 
variant repeat-PCR (Jeffreys et al. 
1991).  

These techniques can be used to 
answer different types of questions, 
and the degree of variability ob- 
served by the different procedures is 
likely to  limit their optimal range of 
usage. For example, ABOtypin&may 
not be a conclusive method to dif- 
ferentiate between individuals, be- 
cause different individuals mav share 
the same blood arouv. while vari- 

u A ,  

able number tandem repeats, on the 
other hand, would not be ideal to  
study population differences, be- 
cause the same allelic variant can 
arise multiple times in different 
populations and their hypervari-
ability generates so many alleles that 
no clear differences between popu- 
lations may be evident. 

T.he nature of Alu insertions 
makes it im~robab le  that the same 
insertion occurred independently 
within human evolutionary time at 
exactly the same genomic location 
in two different individuals. In ad- 
dition, there is no known mecha- 
nism to precisely delete just the re- 
petitive elements without deleting 
flanking sequences or  leaving re-
sidual Alu sequences behind. There- 
fore, polymorphic Alu insertions 
represent a distinct, easy-to-measure 
genetic change resulting from an 
event that occurred one time within 
the human lineage. These character- 
istics make the polymorphic Alu in-
sertions valuable tools for human 
population genetic studies and DNA 
typing, while providing information 
for the window of genetic variabil- 
ity left by highly variable sequences 
on the one hand and more conserved 
single and multiple copy genes on 
the other. 

The use of polymorphic Alu inser-
tions in paternity &sting. We ap- 
plied the principle of PCR-based 
Alu polymorphism testing to ascer- 
tain paternity using five polymor- 
phic Alu insertions. The five HS 
Alu elements examined are unique 
to  the human lineage. Their genomic 
localizations have been described 
(reviewed in Novick et al. 1994). In 
one study, we compared our strat- 
egy with the two approaches most 
widely used in paternity testing: HLA 
molecules and RFLP analysis. 

The HLA complex is the most 
polymorphic set of genetic markers 
in humans, so it is a powerful system 
to resolve cases of disputed pater- 
nity (Lamm et al. 1983).  RFLP analy-
sis is based on differential digestion 
of the DNA with a restriction en- 
zyme. This analysis results in a dis- 
tinctive banding pattern that reveals 
not only the virtually unique genetic 
profile of an individual but also al- 
lows the parental origin of each band 
to be determined (Helminen et al. 
1988).  

Figure 4 displays the outcome of 
the analysis of one family for one 
locus. The results of the paternity 
testing using HS Alu polymorphism 
for the five loci in the same family is 
shown in Figure 5. To  determine the 
likelihood of parentage of the two 
parents with respect to  the five off- 
spring of the pedigree, the paternity 
index and paternity probability were 
calculated using standard formulas 
as previously described (Novick et 
al. 1994).  

The RFLP and HLA analysis of 
this pedigree yielded a probability 
of paternity of 99.99% and 85%, 
respectively. According to the Hs 
Alu polymorphism assay, the prob- 
ability of paternity obtained was 
89%, and the probability of mater- 
nity was 96%. There are hundreds 
of potential polymorphic Alu mark-
ers for this type of analysis. Cur- 
rently, our laboratories are in the 
process of characterizing additional 
polymorphic Alu insertions. Five to  
ten additional polymorphic Alu mark-
ers would allow probability determi- 
nations in the order of 99.99%. 

Conclusions 

DNA structure was initially viewed 
as a chain of rigid building blocks 



and the sequence DNA-to-RNA-to-
protein was the sole and central 
dogma describing gene function. 
Unexpected discoveries in the field 
of gene structure and function have 
opened new perspectives, and old 
paradigms are replaced by continu- 
ously emerging hypotheses. Within 
this context, transposable elements, 
and Alu sequences in particular, 
constitute a large portion of the ge- 
nome. Their insertion is not entirelv 
random and, rather than being use- 
less sequences, they represent a dra- 
matic source of genetic variation. 

Like any other type of mutation, 
Alu sequences are in most cases del- 
eterious but not useless to the popu- 
lation as a whole. As retrotrans-
posons and facilitators of unequal 
crossing over, they reshuffle and 
duplicate the DNA, thereby gener- 
ating a significant amount of ge-
netic variability while providing 
genetic flexibility and increasing the 
population's survival in a changing 
environment. As a result. there are 
innumerable cases in which Alu ele-
ments and SINEs, in general, func- 
tion in normal gene structure and 
activity. Transposable elements con- 
stitute a remarkably active compo- 
nent of a fluid and constantly chang- 
ing gene pool, having only partially 
understood functions. and can be 
reckoned as a force helping to  shape 
the evolutionary path of the entire 
genome. 
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